

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 178 (2005) 1837-1843

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

Structure and properties of titanium-zinc borophosphate glasses

Ladislav Koudelka^{a,*}, Petr Mošner^a, Jaroslav Pospíšil^a, Lionel Montagne^b, Gerard Palavit^b

^aFaculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic ^bLaboratoire de Cristallochimie et Physicochimie du Solide, Ecole Nationale Superieure de Chimie de Lille, BP108, 59652 Villeneuve d'Ascq Cedex, France

Received 1 December 2004; received in revised form 15 March 2005; accepted 17 March 2005 Available online 15 April 2005

Abstract

The structure of 50ZnO $-10B_2O_3-40P_2O_5 + x$ TiO₂ glasses prepared by slow cooling (for x = 0-24 mol% TiO₂) or by quenching (for x = 28-64 mol% TiO₂) was studied by Raman, ³¹P and ¹¹B MAS NMR spectroscopy. TiO₂ incorporates into the glass structure, which results in a decrease in the molar volume and an increase in the glass transition temperature. According to Raman spectra Ti atoms form distorted TiO₆ octahedra and their incorporation into the structural network results in the depolymerization of phosphate chains. ¹¹B NMR spectra of the glasses with increasing TiO₂ content show gradual changes from one symmetrical signal of B(OP)₄ units to a broad complex signal which was separated into five signals ascribed to four different types of BO₄ units ascribed to the formation of TiO₆ units in the glass structure.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Borophosphate glasses; Raman spectra; NMR spectra; Titanium dioxide; Glass structure

1. Introduction

Phosphate, borate and borophosphate glasses doped with TiO₂ have been studied in recent years for their possible technological applications associated mainly with their non-linear optical properties [1]. Therefore, there is also a great interest in the study of the structure and properties of various glass-forming systems based on P₂O₅ and TiO₂. Spectroscopic studies of phosphatebased glasses doped with titanium dioxide TiO₂ were reported in [2–5]. In these glasses, TiO₂ behaves as intermediate network former and contributes to the stabilization of the phosphate network and thus relatively large glass-forming regions were reported [2,3]. The incorporation of TiO_x polyhedra into the structural network was realized mostly with the formation of TiO₆ octahedra [1,2,4] or TiO₅ distorted polyhedra [3]. The previous study of PbO–B₂O₃–P₂O₅– TiO₂ glasses [4] showed that the incorporation of TiO₂ into the borophosphate glasses is improved by small additions of B₂O₃ (about 10 mol% B₂O₃) in comparison with lead phosphate glasses. Therefore, for the study of the effect of TiO₂ on zinc borophosphate glasses we have chosen 50ZnO–10B₂O₃–40P₂O₅ as a starting glass composition. This contribution deals with the preparation and study of the effect of TiO₂ on the structure and properties of the Zn borophosphate glass.

2. Experimental

Glasses of the $50ZnO-10B_2O_3-40P_2O_5+xTiO_2$ system were prepared from ZnO, H_3BO_3 , H_3PO_4 and TiO_2 by heating the reaction mixture up to 1200-1300 °C in a Pt crucible, followed by cooling the melt in air or by quenching between two copper blocks to the room

^{*}Corresponding author. Fax: +420466037068.

E-mail address: ladislav.koudelka@upce.cz (L. Koudelka).

^{0022-4596/\$ -} see front matter \odot 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2005.03.025

temperature. The glasses were separately annealed for 60 min at a temperature of 10 K above their $T_{\rm g}$ and then slowly cooled to room temperature to improve their mechanical properties. The glass density, ρ , was determined on bulk samples by the Archimedes method using CCl₄ as the immersion liquid. The molar volume, $V_{\rm M}$, was calculated using the expression $V_{\rm M} = \bar{M}/\rho$. From the thermomechanical analysis the values of the thermal expansion coefficient, α , the glass transition temperature, $T_{\rm g}$, and the dilatation softening temperature, $T_{\rm d}$, were determined.

Raman spectra were measured on an FT IR spectrometer, Bruker model IFS 55, with the Raman attachment, FRA 106, under excitation with a Nd:YAG laser radiation using a slit width of 4 cm^{-1} with the power of 300 mW at the sample surface. The Raman spectra were measured at room temperature on bulk samples using 400 scans.

³¹P and ¹¹B MAS NMR spectra were measured on a BRUKER Avance 400 spectrometer equipped with a standard 1H-X probe with 4mm rotors. The Larmor frequencies were 161.9 and 128.4 MHz for ³¹P and ¹¹B, respectively. Pulse length of $1 \mu s$ was used for ${}^{31}P$, corresponding to $\pi/9$. To avoid background signals from the boron nitride stator, a rotorsynchronized echo was used for the detection with selective pulse lengths of 20 and 40 µs for the first and the second pulse, respectively. In total, 32-128 scans were typically used to obtain a correct signal to noise ratio. The recycle delay was 10s for ¹¹B MAS NMR and 20s for the ³¹P MAS NMR measurements, which were sufficient to enable relaxation. ³¹P chemical shifts are referenced to an 85% H₃PO₄ solution, those of ¹¹B to BPO₄ used as a secondary reference at-30 ppm. In the present manuscript, negative shifts are upfield (shielded), according to the delta convention reported by Levitt [6].

The Q^n notation introduced by Van Wazer [7] is used in this paper: n is the number of bridging oxygen atoms bonded to a given PO₄ sites, i.e., Q^2 is the metaphosphate unit with two bridging oxygen atoms and Q^1 is the end unit with one bridging oxygen atom.

3. Results

By slow cooling of the melt in air we have obtained homogeneous $50\text{ZnO}-10\text{B}_2\text{O}_3-40\text{P}_2\text{O}_5 + x\text{TiO}_2$ glasses in the concentration region of x = 0-24 mol% TiO₂ and by quenching between copper plates in the region of x = 28-64 mol% TiO₂. The color of the doped glasses slowly changed from clear to yellowish and brown with increasing TiO₂ content. The density of the doped borophosphate glasses increases slightly with increasing content of TiO₂, whereas the molar volume of the glasses steadily decreases (see Table 1). The values of glass transition temperature T_g increase significantly Table 1

Molar fraction of TiO₂, density (ρ), molar volume (V_M), glass transition temperature (T_g), dilatation softening temperature (T_d) of 50ZnO-10B₂O₃-40P₂O₅+*x*TiO₂ glasses

x (mol%)	$\rho \ (\mathrm{g}\mathrm{cm}^{-3})$	$V_{\rm M}~({\rm cm}^3)$	$T_{\rm g}$ (°C)	$T_{\rm d}$ (°C)
0	3.14	33.26	483	517
2	3.16	32.85	492	550
4	3.18	32.52	502	561
8	3.21	31.93	511	571
12	3.25	31.35	526	583
16	3.26	30.93	535	579
24	3.30	30.23	542	597
28	3.31	29.95	545	600
32	3.31	29.71	548	607
36	3.32	29.67	551	602
40	3.32	29.58	554	600
48	3.33	29.29	556	614
56	3.34	28.65	558	613
64	3.35	28.28	560	617

Fig. 1. Compositional dependences of the glass transition temperature T_g and the thermal expansion coefficient α in the glass series 50ZnO-10B₂O₃-40P₂O₅+xTiO₂.

with increasing TiO₂ content (see Fig. 1). The observed increase in T_g is more steep for the slowly cooled samples, having the composition of x = 0-24 mol% TiO₂ (T_g increases from 483 to 557 °C). For the samples prepared by quenching (x = 28-64 mol% TiO₂) the increase in T_g is smaller (from 542 to 560 °C). Similar trends were revealed for the data on the dilatometric softening temperature T_d (Table 1).

On the other side, thermal expansion coefficient, α , with increasing content of titania decreases at first sharply within the concentration range 0–12 mol% TiO₂, while at higher titania concentrations the decrease of α slower (see Fig. 1).

Raman spectra of the $50ZnO-10B_2O_3-40P_2O_5+x$ TiO₂ glasses are shown in Fig. 2 for the concentration region of x = 0-24 mol% TiO₂ and in Fig. 3 for the region of 28-64 mol% TiO₂. The spectrum of the $50ZnO-10B_2O_3-40P_2O_5$ borophosphate glass shows

Fig. 2. Raman spectra 50ZnO $-10B_2O_3-40P_2O_5 + x$ TiO₂ glasses for the samples with x = 0-24 mol% TiO₂.

Raman Shift (cm⁻¹)

one broad band in the high-frequency region with a maximum at 1162 cm^{-1} and two medium bands in the middle-frequency region peaking at 747 and 666 cm^{-1} . In the region with a low TiO₂ content of x = 0-12 mol% TiO₂ (Fig. 2) the shape and the position structure of the dominant high-frequency Raman band observed in the region of $900-1400 \text{ cm}^{-1}$ changes very significantly, whereas in the glasses with a higher TiO₂ content the high-frequency band shifts slowly to lower wavenumbers up to 979 cm^{-1} at the glass with x = 64 mol% TiO₂. In TiO₂-rich glasses (Fig. 3) with increasing x another two strong bands at 798 and 652 cm^{-1} and a strong band in the region of deformation vibrations at 304 cm^{-1} grow significantly with increasing x.

³¹P MAS NMR spectra (Fig. 4) show two overlapping signals at -25 and -16 ppm for the base glass and their shape evolves with increasing TiO₂ into one signal peaking at -16 ppm. The ³¹P spectra contain a large set of spinning sidebands due to uncomplete elimination of the chemical shift anisotropy at the MAS spinning frequency used. For the sake of clarity, only the

Fig. 3. Raman spectra 50ZnO $-10B_2O_3-40P_2O_5 + x$ TiO₂ glasses for the samples with x = 28-64 mol% TiO₂.

isotropic region is shown on the spectra. The highand low-frequency wings that appear on some spectra are due to spinning sidebands.

The ¹¹B NMR spectra (Fig. 5) show several BO_4 resonances between -4.2 and 0 ppm, the intensity of the low-field resonances increases progressively at the expense of the high-field ones. In the low-field region a broad signal characteristic of BO_3 site can be seen, which intensity increases with the TiO₂ content.

4. Discussion

A relatively high solubility of TiO_2 in the zinc borophosphate glasses is one of several evidences of its glass-forming behavior in the studied 50ZnO-10 B_2O_3 -40 P_2O_5 + xTiO₂ glasses. The glass-formation region is larger here than in the similar lead borophosphate glass, where bulk glasses were formed by slow cooling only up to x = 16 mol% TiO₂ [4]. Also the observed decrease in the molar volume and increase of the glass transition temperature with increasing TiO₂ content (Table 1) confirm the conclusion that titanium

Fig. 4. ³¹P MAS NMR spectra of the $50ZnO-10B_2O_3-40P_2O_5 + xTiO_2$ glasses for the samples with x = 0-64 mol% TiO₂.

dioxide enters the structural network and increases cohesion forces inside the network of the starting $50ZnO-10B_2O_3-40P_2O_5$ glass. The observed trends in oppositional changes in the compositional dependences of the glass transition temperature and the thermal expansion coefficient are similar to those observed recently by Jun et al. [8] in phosphate-based glasses, where the product of T_g and α was found to be a constant.

The yellowish up to brown color of the glasses we ascribe to the presence of small amounts of Ti^{3+} ions in the glasses. Similar coloration of glasses due to the presence of Ti^{3+} ions was observed also in the studies of calcium phosphate glasses with additions of TiO_2 [2]. According to Hashimoto et al. [9] decoloration of the glasses can be done by annealing at temperatures around T_g , which results in the removing of Ti^{3+} ions from the glass.

The coordination of Ti^{4+} ions by oxygen atoms in the studied zinc titanophosphate glasses is reflected in the character of their Raman spectra. The spectra of the TiO₂-rich glasses (Fig. 3) reveal two bands at 798 and 652 cm^{-1} , which can be ascribed to the vibrations of

Fig. 5. ¹¹B MAS NMR spectra of the 50ZnO $-10B_2O_3-40P_2O_5+x$ -TiO₂ glasses for the samples with x = 0-64 mol% TiO₂.

titanate units TiO_x , because their relative intensity against the high-frequency band at 979 cm⁻¹ increases with increasing TiO₂ content. In order to solve the assignment of these two bands we have prepared sodium glass of the composition $50Na_2O-10B_2O_3-40P_2O_5+48$ TiO₂ and compared its Raman spectra with the corresponding $50ZnO-10B_2O_3-40P_2O_5+48TiO_2$ glass (Fig. 6). Both spectra reveal a similar structure; only the corresponding Raman bands at sodium glass are shifted to lower wavelengths in comparison with the spectra of the zinc glass. Krimi et al. [10] in their study of Na₂O-TiO₂-P₂O₅ glasses observed similar bands at 742 and $637 \,\mathrm{cm}^{-1}$ and ascribed these bands to the vibrations of distorted TiO₆ octahedra. Its shift to higher wavelengths in Zn glasses can be explained by the differences in the ionic field strength of Na^+ and Zn^{2+} cations. Therefore, we suppose that titanium ions form TiO₆ octahedra in the structure of the studied glasses and that the bands of 652 and $798 \,\mathrm{cm}^{-1}$ in the Raman spectra of Ti-rich glasses Zn borophosphate glasses can be assigned to the vibrations of TiO₆ units. Moreover, the measurement of Raman spectra with the polarized light showed that the band of $798 \,\mathrm{cm}^{-1}$ is polarized, i.e.,

Fig. 6. Comparison of the Raman spectra of $50ZnO-10B_2O_3-40-P_2O_5+48TiO_2$ glass and $50Na_2O-10B_2O_3-40P_2O_5+48TiO_2$ glass.

it corresponds to the totally symmetric vibration of TiO_6 units. The smaller band of 496 cm^{-1} present in the Raman spectrum of sodium glass is probably overlapped in the Raman spectrum of Zn glass by a broadband of deformation vibrations and can be seen only as a shoulder. This band can be seen also in the Raman spectra of sodium titanophosphate glasses [10], where its assignment was not given. Sakka et al. [11] report the band of 611 cm^{-1} as a characteristic for the octahedral coordination of Ti in rutile crystals.

The information on the vibrations of phosphate units can be obtained from the high-frequency part of the Raman spectra. Its evolution in the glasses with a low-TiO₂ content (Fig. 2) shows on the depolymerization of phosphate chains, because in the region 0-12 mol%TiO₂ its maximum shifts from the region of the vibration of Q^2 units into the region characteristic for the vibrations of Q^1 units [12].

In the parent undoped glass of the composition, $50\text{ZnO}-10\text{B}_2\text{O}_3-40\text{P}_2\text{O}_5$ this band is accompanied by two medium bands peaking at 666 and 747 cm⁻¹ ascribed to the vibrations of bridging oxygen atoms in the Q^2 chains and Q^1 units, respectively [12]. The band of 666 cm⁻¹, characteristic for the vibrations of bridging oxygen atoms between metaphosphate units [13], vanishes within the concentration region of $x = 0-8 \mod \%$ TiO₂ simultaneously with increasing content of Q^1 units. On the other side the band of 747 cm⁻¹ shifts to higher wavenumbers up to 772 cm⁻¹ at the glass with $x = 20 \mod \%$ TiO₂ showing on the presence of Q^1 units.

This evolution of the Raman spectra we ascribe to the interruption of metaphosphate chains by the insertion of TiO₆ units. The dominant band of the stretching vibrations of phosphate units changes its character also at the glasses with a higher TiO₂ content, where the strength of the band at 1030–1040 cm⁻¹ decreases and the strength of the band 966–980 cm⁻¹ increases. The latter band approaches the region characteristic of the vibrations of Q^0 (orthophosphate) units in the solid orthophosphates [14]. Therefore, we cannot exclude that in the TiO₂-rich glasses some phosphate groups are isolated by titanate or borate groups.

³¹P MAS NMR spectra (Fig. 4) of the parent glass of the composition 50ZnO-10B₂O₃-40P₂O₅ reveals one broad resonancy composed of two signals with maxima at $\delta = -25 \text{ ppm} - 16 \text{ ppm}$. With increasing content of TiO_2 the strength of the second maxima increases, while that of the first maxima decreases and the maximum of the first signal shifts downfield. These changes in the NMR spectra are associated with the depolymerization of the borophosphate network and the formation of Q^1 sites bonded to TiO₆ polyhedra. We note that in these borophosphate glasses, Q^1 and Q^2 sites may be linked to either another phosphate unit, or to a borate unit (BO₄ or BO_3). The broad distribution of chemical shifts does not enable to distinguish a possible small amount of the Q^0 units the presence of which cannot be excluded according to the Raman spectra. This ³¹P chemical shift distribution originates from the distribution of bond lengthes and angles, which are inherent to the amorphous state.

¹¹B MAS NMR spectra (Fig. 5) of the parent glass of the composition $50ZnO-10B_2O_3-40P_2O_5$ show one symmetrical signal at -4.3 ppm, characteristic of BO₄ units coordinated by four phosphorus atoms [15]. With increasing TiO₂ content the structure of the NMR signal changes very significantly. In the region of positive values of the chemical shift the resonancy characteristic of BO₃ units [16] appears in the NMR spectra showing on the change in the coordination of boron atoms from tetrahedral BO₄ to three-coordinated in BO₃ units. The starting symmetric resonancy of BO₄ units also changes its structure, which can be separated into four signals reflecting four different coordinations of boron atoms. Thus we have decomposed the obtained ¹¹B MAS NMR spectra into individual components corresponding to the structural units identified with these spectra— $B(OP)_4$ at -4.27 ppm, $B(OP)_3(O-Zn,Ti)$ at -2.5 ppm, $B(OP)_2(O-Zn, Ti)_2$, at -0.3 ppm, $B(OP)_1O(Zn, Ti)_3$ at 2.3 ppm and BO_3 units at 10.6 ppm. An example of the fit is shown in Fig. 7 for the glass composition $50ZnO-10B_2O_3-40P_2O_5+48$ TiO₂. The BO₃ resonance is fitted with a second-order quadrupolar lineshape with typical characteristics (Cq = 2.4 MHz, $\eta q = 0.5$). BO₄ are fitted with Gaussian lineshape, meaning that they are submitted to a very

Fig. 7. Example of the decomposition of ${}^{11}B$ MAS NMR spectra of the 50ZnO-10B₂O₃-40P₂O₅+48TiO₂ glass. Dotted line: experimental spectrum, continuous lines: individual components and fitted spectrum.

Fig. 8. The compositional dependence of the relative amount of basic structural borate units in $50ZnO-10B_2O_3-40P_2O_5 + xTiO_2$ glasses for the samples with x = 0-64 mol% TiO₂ as obtained by the fit of ¹¹B MAS NMR spectra.

small quadrupolar effect. The existence of the 4th site assigned to $B(OP)_1O(Zn, Ti)_3$ at 2.3 ppm is, however, not sure since its presence is only indicated by an optimization of the fit, not by a singularity on the spectra. The attributions are justified by considering that the incorporation of TiO_2 into the borophosphate network creates new non-bridging oxygen atoms, which are at the origin of the different BO₄ sites. From the compositional dependence of the number of individual borate units (see Fig. 8) we can see that with increasing TiO_2 content the number of BO₃ units steadily increases, whereas the number of BO₄ units decreases. This effect can be described by the equation

$$BO_{4/2} + TiO_{4/2} = BO_{3/2} + TiO_{6/2}.$$
 (1)

This equation corresponds to the results of Raman spectra, which showed on the presence of TiO_6 octahedra in the structural network. Titanium dioxide brings stoichometrically two oxygen atoms in $\text{TiO}_{4/2}$ and needs an additional oxygen atom for the formation of $\text{TiO}_{6/2}$ octahedra. This additional oxygen atom is evidently taken off from the boron coordination and thus boron atoms transfer one oxygen atom to titanium and convert their $\text{BO}_{4/2}$ coordination into $\text{BO}_{3/2}$ coordination.

5. Conclusion

The doping of zinc borophosphate glasses with TiO₂ showed that the titanium dioxide plays here the role of an intermediate oxide, which incorporates into the structural network. This incorporation increases bonding forces inside the network, which is reflected in increasing values of glass transformation temperature. A relatively high content of TiO₂ in these glasses resulted in the appearance of distinct vibrational bands of titanate structural units in the Raman spectra. The formation of TiO₆ octahedra inside the network resulted in the depolymerization of phosphate and borate chains. Such a high coordination number of Ti demanded a high number of bonding oxygen atoms which could explain the observed changes in the coordination of boron in these glasses, where according to the ¹¹B MAS NMR spectra with increasing incorporation of TiO₂ into the glass structure the tetrahedral BO₄ units are gradually replaced by trigonal BO₃ units.

Acknowledgments

The authors L.K. and P.M. are grateful for the financial support of the Grant Agency of Czech Republic (Grant No. 104/04/0711) and from the research project No. 0021627501 of the Ministry of Education of Czech Republic.

References

- [1] E. Fargin, Phosphorus Res. Bull. 10 (1999) 490-496.
- [2] R.L. Brow, D.R. Tallant, W.L. Warren, A. McIntyre, D.E. Day, Phys. Chem. Glasses 38 (1997) 300–306.
- [3] L. Montagne, G. Palavit, A. Shaim, M. Et-Tabirou, P. Hartmann, C. Jäger, J. Non-Cryst. Solids 293–295 (2001) 719–725.
- [4] L. Koudelka, P. Mošner, M. Zeyer, C. Jäger, J. Non-Cryst. Solids 326–327 (2003) 72–76.
- [5] L. Montagne, S. Daviero, G. Palavit, A. Shaim, M. Et-Tabirou, Chem. Mater. 115 (2003) 4709–4716.
- [6] M. Levitt, J. Magn. Reson. 126 (1997) 164-182.
- [7] V. Wazer, Phosphorus and its Compounds, vols. 1 and 2, Interscience, New York, 1951.
- [8] J.S. Jun, M.R. Cha, B.H. Jung, H.S. Kim, J. Korean Ceram. Soc. 40 (2003) 1127–1131.
- [9] T. Hashimoto, H. Nasu, Y. Kamiza, Abstracts XX International Congress on Glass, Kyoto, The Ceramic Society of Japan, Kyoto, 2004, p. 133.

- [10] S. Krimi, A. El Jazouli, L. Rabardel, M. Couzi, L. Mansouri, G. Le Flem, J. Solid State Chem. 102 (1993) 400–407.
- [11] S. Sakka, F. Mizaji, K. Fukumi, J. Non-Cryst. Solids 112 (1989) 64–68.
- [12] V. Fawcett, D.A. Long, L.H. Taylor, Proceedings of the 5th International Conference of Raman Spectroscopy, Freiburg, Hans Ferdinand Schulz Verlag, Freiburg/Br. 1976, pp. 112–113.
- [13] Ya.S. Bobovich, Opt. Spektrosk. 13 (1962) 492-497.
- [14] R.A. Nyquist, C.L. Putzig, M.A. Leugers, The Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts, vol. 1, Academic Press, New York, 1997.
- [15] R.K. Brow, D.R. Tallant, J. Non-Cryst. Solids 222 (1997) 396-406.
- [16] J.F. Ducel, J.J. Videau, K.S. Suh, J. Senegas, Phys. Chem. Glasses 35 (1994) 10–16.